Formula for primes

In mathematics, it is known that no non-constant polynomial function P(n) exists that evaluates to a prime number for all integers n (or even almost all n). Using algebraic number theory one can make that quite precise.

The quadratic polynomial

P(n) = n2 + n + 41

is prime for all non-negative integers less than 40. The primes for n = 0, 1, 2, 3... are 41, 43, 47, 53, 61, 71... The differences between the terms are 2, 4, 6, 8, 10... For n = 40, it produces a square number, 1681, which is equal to 41×41, the smallest composite number for this formula. In fact if 41 divides n it divides P(n) too. The phenomenon is related to the Ulam spiral, which is also implicitly quadratic, and the class number.

A set of diophantine equations in 26 variables can be used to obtain primes: A given number k + 2 is prime iff the following system of diophantine equations has a solution in the natural numbers (Riesel, 1994):

<math>0 = wz + h + j - q<math>
<math>0 = (gk + 2g + k + 1)(h + j) + h - z<math>
<math>0 = (16k + 1)^3(k + 2)(n + 1)^2 + 1 - f^2<math>
<math>0 = 2n + p + q + z - e<math>
<math>0 = e^3(e + 2)(a + 1)^2 + 1 - o^2<math>
<math>0 = (a^2 - 1)y^2 + 1 - x^2<math>
<math>0 = 16r^2y^4(a^2 - 1) + 1 - u^2<math>
<math>0 = n + l + v - y<math>
<math>0 = (a^2 - 1)l^2 + 1 - m^2<math>
<math>0 = ai + k + 1 - l - i<math>
<math>0 = ((a + u^2(u^2 - a))^2 - 1)(n + 4dy)^2 + 1 - (x + cu)^2<math>
<math>0 = p + l(a - n - 1) + b(2an + 2a - n^2 - 2n - 2) - m<math>
<math>0 = q + y(a - p - 1) + s(2ap + 2p - p^2 - 2p - 2) - x<math>
<math>0 = z + pl(a - p) + t(2ap - p^2 - 1) - pm<math>

The following function yields all the primes, and only primes, for non-negative integers n:

<math>f(n) = 2 + (2(n!) \operatorname{mod} (n+1))<math>

This formula is based on Wilson's theorem; the number two is generated many times and all other primes are generated exactly once by this function. (In fact a prime p is generated for n = (p − 1) and 2 otherwise (ie. when n + 1 is composite))

Using the floor function <math>\lfloor x\rfloor<math> (defined to be the largest integer less than or equal to the real number x), one can construct several formulas for the n-th prime. These formulas are also based on Wilson's theorem and have little practical value: the methods mentioned above under "Finding prime numbers" are much more efficient.

Define

<math>\pi(m) = \sum_{j=2}^m \frac

{ \sin^2 ( {\pi \over j} (j-1)!^2 ) } { \sin^2( {\pi \over j} ) } <math> or, alternatively,

<math> \pi(m) = \sum_{j=2}^m \left\lfloor {(j-1)! + 1 \over j} - \left\lfloor{(j-1)! \over j}\right\rfloor \right\rfloor <math>

These definitions are equivalent; π(m) is the number of primes less than or equal to m. The n-th prime number pn can then be written as

<math>p_n = 1 + \sum_{m=1}^{2^n} \left\lfloor \left\lfloor { n \over 1 + \pi(m) } \right\rfloor^{1 \over n} \right\rfloor<math>

Another approach does not use factorials and Wilson's theorem, but also heavily employs the floor function (S. M. Ruiz 2000): first define

<math>\pi(k) = k - 1 + \sum_{j=2}^k \left\lfloor {2 \over j} \left(1 + \sum_{s=1}^{\left\lfloor\sqrt{j}\right\rfloor} \left(\left\lfloor{ j-1 \over s}\right\rfloor - \left\lfloor{j \over s}\right\rfloor\right) \right)\right\rfloor <math>

and then

<math>p_n = 1 + \sum_{k=1}^{2(\lfloor n \ln(n)\rfloor+1)} \left(1 - \left\lfloor{\pi(k) \over n} \right\rfloor\right) <math>

External links

  • FRACTRAN (http://mathworld.wolfram.com/FRACTRAN.html)
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools