Quotient group

In mathematics, given a group G and a normal subgroup N of G, the quotient group, or factor group, of G over N is a group that intuitively "collapses" the normal subgroup N to the identity element. The quotient group is written G/N and is usually spoken in English as G mod N (mod is short for modulo).

Contents

The product of subsets of a group

In the following discussion, we will use a binary operation on the subsets of G: if two subsets S and T of G are given, we define their product as:

<math>ST = \{ st : s \isin S {\rm~and~} t \isin T \}<math>

This operation is associative and has identity element {e}, where e is the identity element of G. Thus, the set of all subsets of G forms a monoid under this operation.

A subgroup N of a group G is normal if and only if the coset equality aN = Na holds for all a in G. In terms of the binary operation on subsets defined above, a normal subgroup of G is a subgroup that commutes with every subset of G.

Definition

We define the set G/N to be the set of all left cosets of N in G, i.e.

<math>G/N = \{ aN : a \isin G \}<math>

The group operation on G/N is the product of subsets defined above. In other words, for each aN and bN in G/N, the product of aN and bN is (aN)(bN). For this operation to be closed, we must show that (aN)(bN) really is a left coset:

(aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N

Note that we have already used the normality of N in this equation. Also note that because of the normality of N, we could have chosen to define G/N as the set of right cosets of N in G. Also note that because the operation is derived from the product of subsets of G, the operation is well-defined (does not depend on the particular choice of representatives), associative and has identity element N.

The inverse of an element aN of G/N is a−1N. This completes the proof that G/N is a group.

Examples

Consider the group of integers Z (under addition) and the subgroup 2Z consisting of all even integers. This is a normal subgroup, because Z is abelian. There are only two cosets, the set of even integers and the set of odd integers, and Z/2Z is the cyclic group with two elements.

As another abelian example, consider the group of real numbers R (again under addition) and the subgroup Z of integers. The cosets of Z in R are all sets of the form a + Z, with 0 ≤ a < 1 a real number. Adding such cosets is done by adding the corresponding real numbers, and subtracting 1 if the result is greater than or equal to 1. The factor group R/Z is isomorphic to S1, the group of complex numbers of absolute value 1 under multiplication. An isomorphism is given by f(a + Z) = exp(2πia) (see Euler's identity).

If G is the group of invertible 3×3 real matrices, and N is the subgroup of 3×3 real matrices with determinant 1, then N is normal in G (since it is the kernel of the determinant homomorphism), and G/N is isomorphic to the multiplicative group of non-zero real numbers.

Properties

Trivially, G/G is isomorphic to the trivial group (the group with one element), and G/{e} is isomorphic to G.

The order of G/N is by definition equal to [G : N], the index of N in G. If G is finite, the index is also equal to the order of G divided by the order of N. Note that G/N may be finite, although both G and N are infinite (e.g. Z/2Z).

There is a "natural" surjective group homomorphism π : GG/N, sending each element g of G to the coset of N to which g belongs, that is: π(g) = gN. The mapping π is sometimes called the canonical projection of G onto G/N. Its kernel is N.

There is a bijective correspondence between the subgroups of G that contain N and the subgroups of G/N; if H is a subgroup of G containing N, then the corresponding subgroup of G/N is π(H). This correspondence holds for normal subgroups of G and G/N as well, and is formalized in the lattice theorem.

Several important properties of quotient groups are recorded in the fundamental theorem on homomorphisms and the isomorphism theorems.

If G is abelian, nilpotent or solvable, then so is G/N.

If G is cyclic or finitely generated, then so is G/N.

Every group is isomorphic to a quotient of a free group.de:Faktorgruppe fr:Groupe quotient it:Gruppo quoziente pl:Grupa ilorazowa

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools