Sinc function

 The sinc function sinc(x) from x = −8π to 8π.
The sinc function sinc(x) from x = −8π to 8π.

In mathematics, the sinc function (for sinus cardinalis), also known as the interpolation function, filtering function or the first spherical Bessel function <math>j_0(x)<math>, is the product of a sine function and a monotonically decreasing function. It is defined by:

<math>\textrm{sinc}(x)

= \left\{ \begin{matrix} \frac{\sin(x)}{x}&:~x\ne 0 \\ \\ 1 &:~x=0 \end{matrix} \right. <math>

The sinc function is sometimes defined as simply sin(x)/x. The function sin(x)/x has a removable singularity at zero, so that, by L'Hôpital's rule we have:

<math>\lim_{x\to 0} \frac{\sin(x)}{x}=1.\,<math>

The above definition for the sinc function is preferred since it removes this singularity and yields a function which is analytic everywhere.

The normalized sinc function is defined as:

<math>\mathrm{sinc}_N(x) = \textrm{sinc}(\pi x)\,<math>

and, as its name implies, is normalized to unity

<math>\int_{-\infty}^\infty \mathrm{sinc}_N(x)\,dx = 1.<math>

This integral must necessarily be regarded as an improper integral; it cannot be taken to be a Lebesgue integral because

<math>\int_{-\infty}^\infty \left|\mathrm{sinc}_N(x)\right|\,dx = \infty.<math>

The normalized sinc function also has the important infinite product

<math>\mathrm{sinc}_N(x) = \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2}\right).<math>

We also have an expression in terms of the gamma function, as

<math>\mathrm{sinc}_N(x) = \frac{1}{\Gamma(1+x)\Gamma(1-x)} = \frac{1}{x! (-x)!}.<math>

Because of its usefulness, the normalized sinc function is sometimes simply called the sinc function and written sinc(x).

The sinc function oscillates inside an envelope of ±1/x. The Fourier transform of the sinc function can be expressed in terms of the rectangular function:

<math>\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \textrm{sinc}(x)e^{-ikx}\,dx=

\sqrt{\frac{\pi}{2}}~\textrm{rect}(k/2)<math>

In the language of distributions, the sinc function is related to the delta function δ(x) by

<math>\lim_{a\rightarrow 0}\frac{1}{\pi a}\textrm{sinc}(x/a)=\delta(x).<math>

This is not an ordinary limit, since the left side does not converge. Rather, it means that

<math>\lim_{a\rightarrow 0}\int_{-\infty}^\infty \frac{1}{\pi a}\textrm{sinc}(x/a)\varphi(x)\,dx
          =\int_{-\infty}^\infty\delta(x)\varphi(x)\,dx = \varphi(0),

<math>

for any smooth function <math>\varphi(x)<math> with compact support.

In the above expression, as a  approaches zero, the number of oscillations per unit length of the sinc function approaches infinity. Nevertheless, the sinc function always oscillates inside an envelope of ±1/x, regardless of the value of a. This contradicts the informal picture of δ(x) as being zero for all x except at the point x=0 and illustrates the problem of thinking of the delta function as a function rather than as a distribution. A similar situation is found in the Gibbs phenomenon.

Applications of the sinc function are found in digital signal processing, communication theory, control theory, and optics.

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools