Skew-symmetric matrix

In linear algebra, a skew-symmetric (or antisymmetric) matrix is a square matrix A whose transpose is also its negative; that is, it satisfies the equation:

AT = −A

or in component form, if A = (aij):

aij = − aji   for

all i and j.

For example, the following matrix is skew-symmetric:

<math>\begin{bmatrix}

0 & 2 & -1 \\ -2 & 0 & -4 \\ 1 & 4 & 0\end{bmatrix}<math>

Contents

Properties

A matrix A is skew-symmetric if AT = −A

If matrices A and B are both skew-symmetric: (AB)T = BA

The "skew-symmetric component" of a matrix A is the matrix B = (AAT)/2; the "symmetric component" of A is C = (A + AT)/2; the matrix A is the sum of its symmetric and skew-symmetric components.

If A is skew-symmetric and x is vector then xTAx = 0.

All main diagonal entries of a skew-symmetric matrix have to be zero, and so the trace is zero.

Let A be a n×n skew-symmetric matrix. The determinant of A satisfies

det(A) = det(AT) = det(−A) = (−1)ndet(A).

In particular, if n is odd the determinant vanishes. This result is called Jacobi's theorem, after Carl Gustav Jacobi (Eves, 1980).

The even-dimensional case is more interesting. It turns out that the determinant of A for n even can be written as the square of a polynomial in the entries of A:

det(A) = Pf(A)2.

This polynomial is called the Pfaffian of A and is denoted Pf(A). Thus the determinant of a real skew-symmetric matrix is always non-negative.

Spectral theory

The eigenvalues of a skew-symmetric matrix always come in pairs ±λ (except in the odd-dimensional case where there is an additional unpaired 0 eigenvalue). For a real skew-symmetric matrix the eigenvalues are all pure imaginary and thus are of the form iλ1, −iλ1, iλ2, −iλ2, … where each of the λk are real.

Skew-symmetric matrices fall into the category of normal matrices and are thus subject to the spectral theorem, which states that any real or complex skew-symmetric matrix can be diagonalized by a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are complex it is not possible to diagonalize one by a real matrix. However, it is possible to bring every skew-symmetric matrix to a block diagonal form by an orthogonal transformation. Specifically, every 2r × 2r skew-symmetric matrix can be written in the form A = R Σ RT where R is orthogonal and

<math>\Sigma = \begin{bmatrix}

\begin{matrix}0 & \lambda_1\\ -\lambda_1 & 0\end{matrix} & 0 & \cdots & 0 \\ 0 & \begin{matrix}0 & \lambda_2\\ -\lambda_2 & 0\end{matrix} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \begin{matrix}0 & \lambda_r\\ -\lambda_r & 0\end{matrix} \end{bmatrix}<math> for real λk. The eigenvalues of this matrix are ±iλk. In the odd-dimensional case Σ has an additional row and column of zeros.

Alternating forms

An alternating form φ on a vector space V over a field K is defined (if K doesn't have characteristic 2) to be a bilinear form

φ : V × VK

such that

φ(v,w) = −φ(w,v).

Such a φ will be represented by a skew-symmetric matrix, once a basis of V is chosen; and conversely an n×n skew-symmetric matrix A on Kn gives rise to an alternating form xTAx.

Infinitesimal rotations

The skew-symmetric n×n matrices form a vector space of dimension

n(n − 1)/2.

This is the tangent space to the orthogonal group O(n) at the identity matrix. In a sense, then, skew-symmetric matrices can be thought of as infinitesimal rotations.

Another way of saying this is that the space of skew-symmetric matrices forms the Lie algebra o(n) of the Lie group O(n). The Lie bracket on this space is given by the commutator:

<math>[A,B] = AB - BA<math>

It is easy to check that the commutator of two skew-symmetric matrices is again skew-symmetric.

The matrix exponential of a skew-symmetric matrix A is then an orthogonal matrix R:

<math>R=\exp(A)=\sum_{n=0}^\infty \frac{A^n}{n!}.<math>

The image of the exponential map of a Lie algebra always lies in the connected component of the Lie group that contains the identity element. In the case of the Lie group O(n), this connected component is the special orthogonal group SO(n), consisting of all orthogonal matrices with determinant 1. So R = exp(A) will have determinant +1. It turns out that every orthogonal matrix with unit determinant can be written as the exponential of some skew-symmetric matrix.

Related topics

References

it:Matrice antisimmetrica

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools